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In 2013, 346 out of 616 fatal crashes in Louisiana were single vehicle crashes with Run-Off-Road (ROR) crashes
being the most common type of single vehicle crash. In order to create effective countermeasures for reducing
the number of fatal single vehicle ROR crashes, it is important to identify any associated key factors that can quan-
titatively assess the performance of roads, vehicles and humans. This research uses Multiple Correspondence
Analysis (MCA), a multidimensional descriptive data analysis method that associates a combination of factors
based on their relative distance in a two dimensional plane, to analyze eight years (2004–2011) of fatal ROR
crashes in Louisiana. This method measures important contributing factors and their degree of association. The
results revealed that drivers of lightweight trucks, drivers on undivided state highways, male drivers in
passenger-vehicles at dawn, older female (65–74) drivers in non-passenger vehicles, older drivers facing hard-
ship to yield in partial access control zones, and drivers with poor reaction time due to impaired driving were
closely associated with fatal ROR crashes.
Results of the MCA method can help researchers select the most effective crash countermeasures. Further work
on the degree of association between the identified crash contributing factors can help safety management
systems develop the most efficient crash reduction strategies.

© 2015 The Authors. Publishing services by Elsevier Ltd. on behalf of International Association of Traffic and
Safety Sciences. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Most single vehicle crashes are ROR crashes, which are more likely to
result in fatalities and severe injuries than typical vehicle crashes are [1].
In 2012 and 2013, respectively 384 and 346 out of a total of 652 and 616
fatal crashes in Louisiana were ROR crashes [2]. From prior studies,
we know that single vehicle ROR crashes are usually caused by a combi-
nation of factors such as inadequate roadway design, mechanical prob-
lems, environmental conditions and/or drivers' poor performance [3–5].
The combination of factors could be spatially different (i.e. crashes occur-
ring on highways versus intersections) and temporally different (i.e.
crashes occurring in December versus those inMay). Failure to recognize
the spatial and temporal differences of those factors may lead to insuffi-
cient or ineffective actions taken to reduce the number of ROR crashes.

Identifying crash-prone factors and combinations of factors by
analyzing a large dataset is not a trivial task. The commonly used statis-
tical inferential methods, i.e. ANOVA, and safety performance models
cannot identify the combination of factors simultaneously. Multiple
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Correspondence Analysis (MCA) is an extension of Correspondence
Analysis (CA) formore than two variables and iswidely used in categor-
ical data analyses, especially in social sciences and marketing research
[6]. By using this technique we can visualize the patterns of combined
crash contributing factors.MCAhelps researchers discover the structure
of categorical data by presenting complicated relationships in a simple
chart that demonstrates a combination of significant variables through
the reduced data dimension analysis. This method presents the correla-
tion between the variables and their relationship to the interested resul-
tant variable by creating combination clouds.

The persistently high rate of fatal ROR crashes in Louisiana and the
United States indicates continuous need for research. Reducing ROR
crashes is critical in fulfilling state and national safety goal and MCA
will help determine the association between key factors of fatal ROR
crashes so that transportation authorities can take necessary actions to
reduce crash frequencies and severities.
2. Literature review

J.P. Benzécri developed Multiple Correspondence Analysis (MCA), a
statistical approach based on Correspondence Analysis (CA). MCA is
usually considered to be one of the main standards of geometric data
ssociation of Traffic and Safety Sciences. This is an open access article under the CC BY-NC-
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Fig. 1. Data table and the two clouds of points generated by MCA with the flowchart [6].
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analysis (GDA) in the fields of social science and marketing research.
GDA is also referred to as the pattern recognitionmethod that treats ar-
bitrary data sets as clouds of points in n-dimensional space. However, in
the field of multivariate transportation data analysis, researchers rarely
use geometric methods. Roux and Rouanet pointed out that this
method, though it is a powerful tool for analyzing a full-scale research
database, is still rarely discussed and therefore under-used in many
promising fields [6].

Hoffmann and De Leeuw used MCA as a multidimensional scaling
method to showhowquestions posed of categoricalmarketing research
data can be answered with MCA in terms of significant and meaningful
results [7]. Fontainewas the first to useMCA for a typological analysis of
vehicle-pedestrian crashes [8]. For Fontaine's research, the classification
of pedestrians involved in crashes was divided into four major groups.
The typology produced by this analysis reveals correlations between
criteria without necessarily indicating a causal link with the crashes.
The resulting typological breakdown served as a basis for in-depth anal-
ysis to improve the understanding of these crashes and propose neces-
sary strategies. Golob andHensher utilizedMCA to establish causality of
nonlinear and non-trivial relationships between socioeconomic de-
scriptors and outcomes of travel behavior [9]. Factor et al. used MCA
to conduct a systematic exploration of the connection between drivers'
characteristics and their involvement in collision types [10]. There is a
Fig. 2. Fatal RO
vast amount of literature on accident research and model development
that, for the sake of brevity, cannot be covered in this article. The re-
search team has compiled an extensive list of this literature in a
webpage for the convenience of any interested readers [11].

The research introduced in this paper serves as a starting point to
demonstrate the application of MCA to determine the significant clouds
of crash contributing factors for fatal ROR crashes. The findings will help
state agencies determine effective crash countermeasures.

3. Methodology

3.1. Theory

For a database or tablewith categorical variables, the schemeofMCA
can be explained by taking an individual record (in row), i, where three
variables (represented by three columns) have three different category
indicators (a1, b2, and c3). The spatial distribution of the points calculat-
ed by the dimensions based on these three categories would be gener-
ated by MCA. As shown in Fig. 1, MCA yields two clouds of points: the
cloud of individual records and the cloud of categories [6]. A cloud of
points is not just a simple graphical display; it can be compared to a geo-
graphic map with the same scale in all directions. A geometric diagram
cannot be strained or contracted along one specific dimension. Thus, a
R crashes.

Image of Fig. 1
Image of Fig. 2


Table 1A
Summary of variables.

Category Frequency Percentage

Crash_time
Day 358 32.17%
Night 755 67.83%

Drugs
No 1049 94.25%
Yes 64 5.75%

Alcohol
No 791 71.07%
Yes 322 28.93%

Day_of_week
Weekday 516 46.36%
Weekend 597 53.64%

Access_control
Full control 285 25.61%
No control 787 70.71%
Partial control 41 3.68%

Alignment
Curve-level 307 27.58%
Hillcrest 22 1.98%
On grade 106 9.52%
Other 5 0.45%
Straight-level 650 58.40%
Straight-level-elevated 23 2.07%

Contributing_factor
Condition of driver 163 14.65%
Movement prior to crash 125 11.23%
Other 204 18.33%
Violations 621 55.80%

Lighting
Dark—continuous street light 148 13.30%
Dark—no street lights 501 45.01%
Dark—street light at intersection only 62 5.57%
Dawn 18 1.62%
Daylight 363 32.61%
Dusk 8 0.72%
Other 13 1.17%

Roadway_condition
No abnormalities 1045 93.89%
Other 31 2.79%
Construction, repair 12 1.08%
Shoulder abnormality 6 0.54%
Object in roadway 5 0.45%
Animal in roadway 3 0.27%
(Other) 11 0.99%

Weather
Clear 823 73.94%
Cloudy 175 15.72%
Other 30 2.70%
Rain 85 7.64%

Highway_type
City street 4 0.36%
Interstate 303 27.22%
Parish road 4 0.36%
State hwy 562 50.49%
U.S. hwy 240 21.56%

Driver_gender
Female 282 25.34%
Male 831 74.66%

Driver_severity
Complaint 74 6.65%
Fatal 736 66.13%
Moderate 68 6.11%
No injury 210 18.87%
Severe 25 2.25%

Driver_age
15–24 295 26.50%
25–34 264 23.72%

Table 1A (continued)

Category Frequency Percentage

Driver_age
35–44 204 18.33%
45–54 177 15.90%
55–64 98 8.81%
65–74 47 4.22%
75 plus 28 2.52%
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basic property of a cloud of points is known by its dimensionality. The
one-dimensional cloud is a simple version whose points lie on a single
line. The two-dimensional cloud is also a convenient version where
points lie on a plane. The full clouds are referred to by their principal di-
mensions (1, 2, 3, etc.) that are ranked in descending order of impor-
tance. The goal of MCA is to create a combination of groups from a
large dataset. Fig. 1 exhibits the flowchart of the MCA procedure
where the cloud of categories and the cloud of individual records are
considered as the cloud of points. Since many texts detail the theory
of MCA, we will describe only the basic fundamentals of the theory. In-
terested readers can consult the listed references [6, 12–14] and refer-
ences included therein.

As shown in Fig. 1, MCA uses tables and user-defined data matrices
to develop the data clouds it produces. The data matrix is an “I by Q”
table with all categorical values with Q representing the number of var-
iables and I indicating the number of records. The total number of cate-
gories for all variables is J=∑q=1

Q Jqwith Jq as thenumber of categories
for variable q. To contain all categories in the data table, another data
matrix is developed as “I by J”where each variable has several columns
to show its possible categorical values. For example, for variable drug in-
volvement there are two columns: one for “yes” and another for “no”. If
an individual crash record indicates no drug problem in this particular
crash, the “yes” column will contain “0” and the “no” column will con-
tain “1”. The number of categories for this variable is two.

Suppose, the number of individual records associated with category k
is denoted bynk (with nk N 0),where fk=nk / n is the relative frequency of
individuals who are associated with category k. The values of fk will gen-
erate a row profile. The distance between two individual records is creat-
ed by the variables forwhich both have different categories. Suppose that
for variable q, individual record i contains category k and individual re-
cord i′ contains category k′ which is different from k. The squared dis-
tance between individual records i and i′ for variable q is defined by

dq
2 i; i0
� � ¼ 1

f k
þ 1

f k0
: ð1Þ

Denoting Q as the number of variables, the overall squared distance
between i and i′ is defined by

d2 i; i0
� � ¼ 1

Q

X
q∈Q

dq
2 i; i0
� �

: ð2Þ

The set of all distances between individual records determines the
cloud of individuals consisting of n points in a space whose dimension-
ality is L, with L ≤ K− Q (overall number K of categories minus number
Q of variables), and assuming n ≥ L. IfMi denotes the point representing
individual i and G denotes themean point of the cloud, the squared dis-
tance from pointMi to point G is

GMi
� �2

¼ 1
Q

X
k∈Ki

1
f k

ð3Þ

where Ki denotes the response pattern of individual i, meaning it is the
set of Q categories associated with individual record i.

The cloud of categories is aweighted cloud ofKpoints (by category k,
a point denoted byMkwith weight nk is represented). For each variable,
the sum of theweights of category points is n, hence for thewhole set K
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the sum is nQ. The relativeweight pk of pointMk is pk= nk / (nQ)= fk/Q.
For each variable, the sum of the relative weights of category points is
1/Q. The sum of the whole set is equal to one.

pk ¼
nk

nQ
¼ f k

Q
with

X
k∈Kq

pk ¼
1
Q

and
X

k∈K
pk ¼ 1

Ifnkk0 indicates the number of individual records having both catego-

ries (k and k′), then the squared distance between Mk and Mk0 is

MkMk0
� �2

¼ nk þ nk0−2nkk0

nknk0=n
: ð4Þ

The numerator is the number of individual records associated with
either k or k′. For two different variables (say q and q′), the denominator
Table 1B
Summary of variables.

Category Frequency Percentage

Road_type
One-way road 61 5.48%
Other 11 0.99%
Two-way road with a physical barrier 55 4.94%
Two-way road with a physical separation 413 37.11%
Two-way road with no physical separation 573 51.48%

Intersection
No 963 86.52%
Yes 150 13.48%

Surface_condition
Dry 956 85.89%
Other 15 1.35%
Wet 142 12.76%

Driver_condition
Distracted 23 2.07%
Drinking alcohol—impaired 145 13.03%
Drinking alcohol—not impaired 3 0.27%
Drug use 9 0.81%
Inattentive 98 8.81%
Normal 207 18.60%
Other 628 56.42%

Driver_distraction
Cell phone 14 1.26%
Not distracted 367 32.97%
Other inside the vehicle 25 2.25%
Other outside the vehicle 13 1.17%
Unknown 694 62.35%

Violations
Careless operation 475 42.68%
No violations 203 18.24%
Unknown 203 18.24%
Other 83 7.46%
Driver condition 69 6.20%
Exceeding speed limit 56 5.03%
(Other) 24 2.16%

Vehicle_condition
No defects observed 896 80.50%
Unknown 129 11.59%
Worn or smooth tires 34 3.05%
Tire failure 32 2.88%
Other 15 1.35%
Defective headlights 3 0.27%
(Other) 4 0.36%

Vehicle_type
Passenger car 399 35.85%
Lt. truck (P.U., etc.) 325 29.20%
SUV 211 18.96%
Motorcycle 94 8.45%
Van 23 2.07%
Truck/trailer/tractor/bus 49 4.40%
(Other) 12 1.08%
is the familiar theoretical frequency for the cell (k, k′) of theKq � Kq0 two-
way table.

While modern machine-learning approaches like association rules
mining can tackle the research problem in this study, MCA was deter-
mined to be the better choice. MCA was chosen because it is better for
interpreting large datasets than conventional log-linear models are.
Moreover, in MCA there is no need to consider any underlying distribu-
tion and no relationship has to be hypothesized. Also, association
rules mining has limitations when it comes to selecting appropriate
threshold values of support and confidence. Smaller values of support
and confidence increase the number of rules immensely which makes
interpreting results difficult, but larger support or confidence values
may ignore import rules. Moreover, rules with a large number of
item sets are difficult to interpret in association rulesmining.MCA over-
comes these difficulties by performing efficient dimensionality reduc-
tions and compiling results into easy-to-read plots.

The actualMCA computations are conducted on the inner product of
the matrix known as the ‘Burt Table’. The research team used open
source statistical software R Version 3.02 to perform the MCA technique
[15]. This study used the FactoMineR package to analyze the dataset due
to its convenient functions compared to other available packages [16].
We developed the combination clouds in MCA on both a variable level
and a category level. It is important to note that categories represent
both variables and a group of individual transactions.
3.2. Initial data analysis

To identify important contributing factors related to fatal ROR
crashes in Louisiana, we collected eight years (2004–2011) of crash
data from the Louisiana Department of Transportation and Develop-
ment (DOTD). The primary dataset was created by merging the crash,
roadway, and vehicle tables. For any given individual crash record,
there are 371 possible variables (153 from the crash table, 40 from the
roadway table and 178 from the vehicle table). Fig. 2, displaying the an-
nual fatal ROR crashes by year in Louisiana, shows that there was a 4%
increase in these crashes between 2010 and 2011 and that the highest
number of fatal ROR crashes was in 2007. The master database created
for this analysis includes all 2777 fatal crashes that occurred in the
eight-year period.

The original list of relevant variables was primarily scanned by ex-
amining the relevance of missing values via a correlation matrix and
the relevance of the distribution skew. This was necessary because
datasets with a large number of missing values makes the MCA plots
Table 2
Number of categories for each variable.

Variables No. of categories

Crash_time 2
Contributing_factor 3
Weather 3
Violations 8
Drugs 2
Lighting 7
Highway_type 5
Vehicle_condition 10
Alcohol 2
Roadway_condition 13
Driver_gender 2
Vehicle_type 7
Day_of_week 2
Road_type 5
Driver_age 7
Access_control 3
Intersection 2
Driver_condition 7
Alignment 6
Surface_condition 3
Driver_distraction 5



Table 3
Eigenvalues and percentages of variance of the first ten dimensions.

Eigenvalue Percentage of
variance

Cumulative percentage
of variance

dim 1 0.175516866 4.336299 4.336299
dim 2 0.152233532 3.7610637 8.097363
dim 3 0.111658319 2.7586173 10.85598
dim 4 0.107289994 2.650694 13.506674
dim 5 0.098413867 2.4314014 15.938075
dim 6 0.089464642 2.2103029 18.148378
dim 7 0.085447954 2.1110671 20.259445
dim 8 0.081651997 2.0172846 22.27673
dim 9 0.076783733 1.8970099 24.17374
dim 10 0.072301528 1.7862731 25.960013
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less informative. By focusing onmeaningful results, a set of key variables
were selected for the final analysis. The variable selection method used
previous research results with engineering judgment. The final dataset
contains 21 variables relevant for this research. Table 1A and Table 1B
enlist the summary of the selected variable counts where the variables
are grouped by:

- Human factor or driver characteristics (driver age, intoxication, con-
dition of the driver, violation type, driver distraction, driver gender,
driver injury)

- Crash characteristics (crash year, crash time, collision type)
- Roadway related (access control, alignment, lighting condition, road
condition, road type, intersection, surface condition, highway type)

- Environment related (weather)
- Vehicle related (vehicle condition, vehicle type)

Some of these variables, such as drug involvement, alcohol involve-
ment and intersection-related crashes, have logical values such as yes or
Table 4
Coordinates of ten random categories.

Categories Dim 1 Dim 2

Day −0.1229733 0.76361165
Night 0.05831052 −0.36208341
Drugs_no 0.03781442 0.06328374
Drugs_yes −0.61980199 −1.03726
Alcohol_no 0.08738488 0.38769916
Alcohol_yes −0.21466285 −0.95239141
Weekday 0.02699992 0.10302833
Weekend −0.02333662 −0.08904962
Full control 0.51010777 0.9268866
No control −0.19223862 −0.35660359

Table 5
Variables in dimensions 1 and 2 according to their significance.

Dimension 1 R2 p.Value

Violations 0.724689 3.10E−304
Driver_condition 0.721744 4.80E−303
Contributing_factor 0.655681 3.78E−256
Driver_distraction 0.447482 4.53E−141
Highway_type 0.214642 8.84E−57
Alignment 0.190087 1.72E−48
Road_type 0.185733 3.81E−48
Roadway_condition 0.150684 3.43E−32
Access_control 0.0935276 2.15E−24
Vehicle_condition 0.0941033 1.99E−19
Vehicle_type 0.0814227 4.26E−18
Intersection 0.025888 6.78E−08
Drugs 0.0234375 2.87E−07
Alcohol 0.0187583 4.52E−06
Driver_gender 0.0141444 6.97E−05
Lighting 0.0196383 1.22E−03
Crash_time 0.00717064 4.70E−03
Weather 0.00857899 2.27E−02
no and true or false. Driver Age is a continuous variable. Since MCA
mainly dealswith qualitative data,we transformed the quantitative var-
iable Driver Age into seven categories: 15–24 years old, 25–34 years old,
35–44 years old, 45–54 years old, 55–64 years old, 65–74 years old, and
75 plus. The other variables are nominal in nature. Table 2 lists the num-
ber of categories in each selected variable.

A preliminary analysis indicates that some variables are highly
skewed, meaning that a majority of crashes fall into one of the two or
more categorical values. For example, 94% of crashes involved a driver
with no drug intoxication, 94% of crashes occurred on normal roadway
conditions, 85% of crashes had no vehicle defects observed, and 86% of
crashes occurred on dry surface conditions. The non-skewed variables
include alcohol involvement, day of the week, vehicle type, roadway
type, driver age, lighting condition, and crash time.
3.3. Multiple Correspondence Analysis

Graphical illustrations are an easyway to perceive and interpret data
because they effectively summarize large, complex datasets by simplify-
ing the structure of the relations between variables and providing a
collective view of the data [6]. Morphological maps are a better way of
presenting information graphically and one can interpret them by
examining the distribution of variable groupings in space. Points
(categories) that are close to the mean are plotted near the MCA plot's
origin and those that are more distant are plotted farther away. Catego-
ries with a similar distribution are near one another in the map as
groups, while those with different distributions stay farther apart.
Hence, we interpret the dimensions (axes) by the position of the points
on the map, using their loading over the dimensions as crucial indica-
tors. A two-dimensional depictionwas sufficient to explain themajority
of the variance in MCA [12].
Dim 3 Dim 4 Dim 5

−0.283717467 −0.73434224 0.106646578
0.134530931 0.34820467 −0.050568841

−0.072056096 0.01395698 0.006015299
1.181044442 −0.22876364 −0.098594505

−0.238421852 0.02584315 0.066466412
0.585688462 −0.06348425 −0.163276186

−0.124161972 −0.06206083 −0.004112785
0.107315875 0.05364051 0.003554769
1.024507953 0.16007211 −0.045563188

−0.371411082 −0.0762524 0.017605474

Dimension 2 R2 p.Value

Driver_condition 0.447825 7.23E−139
Alcohol 0.369241 2.62E−113
Access_control 0.315864 3.19E−92
Highway_type 0.29089 3.20E−81
Lighting 0.296896 3.45E−81
Crash_time 0.276491 3.79E−80
Violations 0.277495 9.13E−74
Contributing_factor 0.236809 1.08E−64
Road_type 0.181327 7.41E−47
Vehicle_condition 0.120415 4.05E−26
Driver_distraction 0.0919242 3.27E−22
Vehicle_type 0.0919929 8.98E−21
Drugs 0.0656417 3.85E−18
Roadway_condition 0.0546583 9.29E−09
Driver_age 0.0311911 4.10E−06
Alignment 0.0181899 1.07E−03
Day_of_week 0.00917463 1.38E−03
Intersection 0.00830842 2.34E−03
Driver_gender 0.00815661 2.56E−03



Fig. 3.MCA plot for variable categories.
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The eigenvalue measures indicate how much each dimension ac-
counts for categorical information. A higher eigenvalue indicates a larg-
er total variance among the variables' loads on that dimension. The
Fig. 4. Combinat
largest possible eigenvalue for any dimension is one. Usually, the first
two or three dimensions contain higher eigenvalues than the others.
In this analysis, the maximum eigenvalue in the first dimension (dim
ion Cloud 1.

Image of Fig. 3
Image of Fig. 4


Fig. 5. Combination Cloud 2.

Fig. 6. Combination Cloud 3.
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Image of Fig. 5
Image of Fig. 6
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1) was 0.18. The similarly low eigenvalues in each dimension indicate
that the variables in the crash data are heterogeneous and all carry, to
some extent, unique information which implies that reducing any of
the variables might result in losing important information concerning
the crash observations. The heterogeneity of the crash variables alludes
to the random nature of crash occurrence.

As seen in Table 3, the eigenvalues of the first 10 dimensions show a
steady decrease in eigenvalues. Based on the calculation, the first two
dimensions cover only 8.1% of the percentage of variance, and the first
10 dimensions (out of 83 dimensions) cover nearly 26% of the percent-
age of variance.

Table 4 lists the coordinates of the first five dimensions of ten
categories. Large coordinate measures indicate that the categories of
a variable are separated along that dimension, while similar coordinate
measures for different variables in the same dimension indicate
the relationship between those variables. Correlated variables provide
redundant information; therefore we did not consider them for combi-
nation formation. Table 5 lists the variables with significance in two
dimensions.

The key advantage of MCA is that it provides insight into the dataset
by using information visualization. We used popular graphical R pack-
age ggplot2 to produce the informative MCA plots [17]. Fig. 3 illustrates
the main MCA plot (perceptual map). The plots in Figs. 4–8 elaborately
show different selected combinations based on their relative closeness
and interestingness. The contribution of a category depends on the
data, whereas the contribution of a variable only depends on the
Fig. 7. Combinat
number of categories of that variable. The more categories a variable
has, the more the variable contributes to the variance of the cloud. The
less frequent a category, the more it contributes to the overall variance.
This property enhances infrequent categories which is desirable up to a
certain point.

The dimension description of each point shows the main character-
istics according to each dimension obtained by a factor analysis. The
dominant variables in dimension 1 are driving violation, driver condi-
tion, driver distraction (the primary contributing factor), and highway
type. The dominant variables for dimension 2 are driver condition, alco-
hol involvement, access control, highway type, lighting, crash hour, and
driving violation.

The combination selection is based on the relative closeness of the
category location in itsMCA plot. Fig. 3 shows the distribution of the co-
ordinates of all categories. This plot gives us an idea of the variable cat-
egories' positions on the two dimensional space based on their
eigenvalues. When the categories are relatively close, they form a com-
bination cloud. In this study, we chose five significant combination
clouds from the MCA plot for further explanation. We did not consider
combination groups with redundant information even though the rela-
tive distancewas often closer. Combination clouds one tofive are shown
in Figs. 4 to 8.

Combination Cloud 1 combines four categories: older drivers (aged
54 plus), partial access control, non-alcohol, and failure to yield. This
cloud indicates that in partial access control zones, older drivers failed
to yield which caused a fatal crash. Combination Cloud 2 shows that
ion Cloud 4.

Image of Fig. 7


Fig. 8. Combination Cloud 5.
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older female drivers aged between 65 and 74 are most likely to have
fatal crashes on straight and hillcrest-aligned roadways while driving
non-passenger cars. Combination Cloud 3 combines the categories of
lightweight trucks, no access control, state highways, and two-way
roads with no physical separation. From this combination cloud, we
know that truck drivers on undivided state highways with no access
control are more likely to have fatal crashes.

Combination Cloud 4 combines the categories: male drivers (age
15–24, 35–44, and 55–64), no-defect passenger cars, dawn, and road-
way segment. This cloud indicates that for male drivers, driving at
dawn on roadway segments is a significant focus group in fatal ROR
crashes.

Combination Cloud 5 indicates that impaired drivingmay cause fatal
crashes due to poor reaction time.

The results presented in this paper demonstrate that we can use
MCA to identify significant combination groups that contribute to fatal
ROR crashes. The authors would also like to mention that the total var-
iance explained by the selected variables is not high (nearly 8.1% in this
study). To adjust for this, we recalculated the inertia coverage by using
theBurt table. The inertia of these twomajor axes the reached 47%.With
a tidy dataset, i.e., a dataset with no missing values, the unsupervised
method used in MCA can generate more interesting combination
clouds. The findings of this research are useful to highway professionals
in determining the nontrivial focus groups in fatal ROR crashes.
4. Conclusions

All parametric regression models contain their own model assump-
tions and pre-defined underlying relationships between response and
exploratory variables. These models could lead to incorrect results due
to the violation of any assumption. MCA, a widely used non-
parametric approach in social sciences and marketing research, has
proven to be a valuable analysis tool in roadway safety, as shown by
the research presented in this paper. Without any pre-defined underly-
ing relationships between response and explanatory variables, the
research presented in this paper analyzed large sets of categorical
crash data, avoiding the difficulty seen in using association rulesmining.

By analyzing several years of fatal ROR crash data, the research team
recognized the key association between the significant contributing fac-
tors using theMCAmethod.With this method, we identified a few par-
ticularly interesting variable combinations. We found that drivers of
lightweight trucks on undivided state highways have a high crash risk,
which may imply a speeding problem. We also found that male
passenger-car drivers at dawn are vulnerable to fatal ROR crashes, and
females between the ages of 65 and 74 driving non-passenger cars
also have a high crash risk. Also, it was found that in partial access con-
trol zones, older drivers facing hardship to yield have a high risk for fatal
ROR crashes. The MCA method was used to determine these fatal ROR
crash focus groups by identifying the combination of factors for fatal
ROR crashes. To reduce such crashes, safety programs should develop
strategies that target to these factors simultaneously for the best results.

By performing an investigation on the fatal ROR crashes, this study
has developed a methodology on the relative closeness of the key asso-
ciated factors of ROR crashes. At a theoretical level, it answers recent
calls to investigate into the actual on-site mechanisms of fatal crashes
using the MCA method. At an empirical level, the findings presented
here show insight on the pattern recognition of traffic crashes and ex-
pose new aspects in traffic crash investigations. Further research will
focus on the joint correspondence analysis and other non-parametric
approaches to find themost dominating association among the contrib-
uting factors.
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